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In this paper, we propose an augmented coupling interface method on a Cartesian grid for
solving eigenvalue problems with sign-changed coefficients. The underlying idea of the
method is the correct local construction near the interface which incorporates the jump
conditions. The method, which is very easy to implement, is based on finite difference discret-
ization. The main ingredients of the proposed method comprise (i) an adaptive-order strategy
of using interpolating polynomials of different orders on different sides of interfaces, which
avoids the singularity of the local linear system and enables us to handle complex interfaces;
(ii) when the interface condition involves the eigenvalue, the original problem is reduced to a
quadratic eigenvalue problem by introducing an auxiliary variable and an interfacial operator
on the interface; (iii) the auxiliary variable is discretized uniformly on the interface, the rest of
variables are discretized on an underlying rectangular grid, and a proper interpolation
between these two grids are designed to reduce the number of stencil points. Several exam-
ples are tested to show the robustness and accuracy of the schemes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Interface problems attract attention due to their various applications in many different fields, such as fluid dynamics,
solid mechanics, electrodynamics, material science, population dynamics, and biochemistry. The interfaces could be material
interfaces, phase boundaries, physical boundaries, or others. Theoretically, partial differential equation models invariably
involve discontinuities in the physical parameters, coefficients, singular source distribution along interfaces, and non-
smooth or even discontinuous solutions. In the cases when the coefficients of elliptic eigenvalue problems are of one sign,
many theoretical results and numerical approaches have been proposed. However, in the case when the coefficients change
sign across an interface, e.g. population dynamics or dielectric-metal surface plasmonics, the corresponding eigenfunctions
may oscillate or decay exponentially (forming a boundary layer) on the two sides of the interfaces. This creates difficulty in
numerical computation for such eigenfunctions.

Mathematically, the corresponding equation with sign-changed coefficients changes type, from being elliptic in the nor-
mal direction to hyperbolic in the tangential directions of the interface, in order to fit the interface conditions. When this
. All rights reserved.
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equation is solved numerically, the change of type makes the discrete systems non-definite (neither positive-definite nor
negative-definite), rendering themselves another difficulty to be resolved numerically. Numerical studies of elliptic interface
problems with positive coefficients have a long history. For body-fitting approaches, we refer readers to [1,2]. For finite ele-
ment approaches, we refer readers to [3–6] and references therein. For finite difference approaches, we refer readers to reg-
ularization methods [7,8], the immersed boundary method [9,10], the immersed interface method (IIM) [11–13], a class of
methods which are based on dimension-by-dimension approaches [14–18], and the multidimensional piecewise polynomi-
als method [19]. Among these dimension-by-dimension methods, the coupling interface method [18] introduces a coupled
equation for the principal second-order derivatives to reduce the number of stencil points, and hence has less restriction on
the geometry of the interfaces. But in all of the above methods, the local linear combination of numerical discretization near
the interface may not be solvable due to the sign-changed coefficients. The nonexistence of the linear combination is natural
when considering problems that have sign-changed coefficients and highly depend on the geometry of the interface. An ex-
tremely large linear combination due to the singularity of the coupled equation will have a serious effect on accuracy and
condition number.

The present approach resolves the above difficulties by modifying the coupling interface method to solve the eigenvalue
problems with sign-changed coefficients. The main ingredients of the proposed method consist of: (i) an adaptive-order
strategy on the two sides of the interface which can approach the functions from both sides of the interfaces by polynomials
of different orders; (ii) when the interface condition involves the eigenvalue, the introduction of an auxiliary variable and an
interfacial operator on the interface reduce the problem to a quadratic eigenvalue problem; (iii) the auxiliary variable is dis-
cretized uniformly on the interface, the rest of variables are discretized on an underlying rectangular grid, and a proper inter-
polation between these two grids are designed to reduce the number of stencil points. In the present study, the method is
derived in detail for one- and two-dimensional problems, and can easily be extended to high dimensions, since the discret-
ization procedure is a dimension-by-dimension approach. In each dimension, the unknown function is approximated by
polynomials of different orders on each side of the interface and connected by the interface conditions. The orders are chan-
ged when the linear combination of the discretization cannot be solved or the interfaces are complex. To stabilize the local
inversion, an asymptotic analysis is proposed. To couple information from different dimensions, a coupling equation is
solved. This procedure reduces the size of the stencil. The adaptive-order strategy is also used when the coupling equation
is not solvable. In addition, this version can integrate with the interfacial operator approach [20] when the interface condi-
tion involves the eigenvalue. New unknowns called interfacial variables are introduced and almost uniformly distributed at
the interfaces in order to avoid the dependency of the introduced new unknowns. Therefore, the location of the interface
condition is realized at the place where the new unknowns are defined, instead of at the intersections of the interface
and the underlying rectangular grid lines in the previous work CIM [18]. In the above cases, the methodology is based on
the coupling interface method but modifications on derivations of coupling equation and interpolations are needed. We call
this version of the coupling interface method the augmented coupling interface method (ACIM). We illustrate our method for
two different cases which arise from population dynamics and surface plasmon, in both one and two dimensions. The com-
mon point of these two cases is that coefficients change their signs across the interfaces. However, the former is easier than
the latter because the jump condition involves the eigenvalue in the latter. In the problem arising from surface plasmon, the
jump condition also involves the eigenvalues and it brings another difficulty besides the sign-changed coefficients.

2. Eigenvalue problems in population dynamics

In population dynamics, the model
�r � ðaruþ buÞ ¼ kmu; in X ð1Þ
was used to describe the stationary dynamics of a population with density u = u(r) subject to a diffusion matrix a = ai,j(r), a
drift vector b = bi(r) and a sign indefinite growth rate m = m(r) where r 2X � Rn. This model is discussed in detail with dif-
ferent boundary conditions: Dirichlet, Neumann, and Robin type in [21] and the references therein. Cantrell and Consner
[22,23] asked an interesting question: among all functions m(r) with

R
X mðrÞ ¼ M < 0 and �m1 < m(r) < m2 (m1, m2, and

M are positive constant), which m(x) yield the smallest principle eigenvalue k1(m)? From the biological point of view, finding
such a minimizing function m(r) is equivalent to determining the optimal spatial arrangement of the favorable and unfavor-
able parts of the habitat for species to survive with a fixed amount of resources. The optimal spatial arrangement of m(r) is
found to be of bang-bang type [23–25], i.e. m = m1 for r 2X� and m = m2 for r 2X+ where X� [Xþ ¼ X. It is thus important
to study this model with sign-changed and discontinuous m(r) theoretically. This also poses the challenge of developing an
accurate and robust numerical algorithm to obtain solutions for Eq. (1).

Suppose the interface C is described by a level set function /(r) = 0 which separates the domain X into two sub domains
X� = {rj/(r) < 0} and X+ = {rj/(r) > 0}. To solve Eq. (1) numerically, a discretization of the left hand side is needed. For the
simplicity, b is assumed to be zero, and the diffusion matrix a(r) and the growth rate m(r) are assumed to be piecewise
constants,
aðrÞ ¼
a�I; r 2 X�;

aþI; r 2 Xþ;

�
mðrÞ ¼

m�; r 2 X�;

mþ; r 2 Xþ;

�
ð2Þ
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where I is an identity matrix. Notice that a± and m± may be of different signs in problems with sign-changed coefficients. On
the interface, the interface conditions are realized by taking limits of the equation on both sides of the interface
½u�C ¼ 0; ð3Þ
½aru � n�C ¼ 0; ð4Þ
where [u]C stands for the jump of u across the interface, and n represents the outer normal direction of the interface. At the
boundary oX, the Robin boundary condition is considered to be
uþ caruðrÞ � n ¼ 0: ð5Þ
Note that the Dirichlet and Neumann boundary conditions are included in the Robin boundary condition by taking c = 0
and 1.

2.1. One-dimensional problems

In one dimension, assuming that X = [0,L], Eq. (1) is reduced to
� 1
mðxÞ ðaðxÞu

0ðxÞÞ0 ¼ kuðxÞ; x 2 ½0; L� ð6Þ
and the boundary conditions (5) become
uð0Þ � cð0Þa�ð0Þu0ð0Þ ¼ 0; ð7Þ
uðLÞ þ cðLÞaþðLÞu0ðLÞ ¼ 0: ð8Þ
Without loss of generality, we consider the interface to consist of just one point: C ¼ fx̂g, where 0 < x̂ < L. The jump condi-
tions (3) and (4) are
uðx̂þÞ � uðx̂�Þ :¼ ½u�x̂ ¼ 0; ð9Þ
aþu0ðx̂þÞ � a�u0ðx̂�Þ :¼ ½au0�x̂ ¼ 0; ð10Þ
The derivation described below can be easily extended to a more general interface that consists of more points.
We use the standard central finite difference discretization for stencils which are away from the interface. For the grid

points near the interface, i.e., where the stencils of the standard finite difference discretization are not in the same region,
local construction from one-sided grid values is used. Here we lay out the details. Let h = L/N, xi = ih, 0 6 i 6 N. Suppose the
interface point x̂ ¼ xi þ ah is located in the interval [xi,xi+1). Let b = 1 � a. Local polynomials of degree p and q are used to
approximate u on the two sides of x̂. The grid values uj, i � p + 1 6 j 6 i + q, are used to reconstruct the local one-side Newton
polynomials,
uðxÞ ¼

Pp�1

‘¼0
½ui; ui�1; � � � ; ui�‘�

Q‘�1

j¼0
ðx� xi�jÞ

 !
þ c1

Qp�1

j¼0
ðx� xi�jÞ; x < x̂;

Pq
‘¼1

½uiþ1;uiþ2; � � � ;uiþ‘�
Q‘�1

j¼1
ðx� xiþjÞ

 !
þ c2

Qq
j¼1
ðx� xiþjÞ; x > x̂;

8>>>>><>>>>>:
ð11Þ
where [ui,ui�1, . . . ,ui�‘] and [ui+1,ui+2, . . . ,ui+‘] are Newton’s divided differences. The coefficients c1 and c2 are determined by
substituting Eq. (11) into the two jump conditions Eqs. (9) and (10) which result in a 2 � 2 linear equations for c1 and c2. The
determinant Dp,q of this linear system is listed in Table 1 for various p and q. When a is always positive, the uniqueness is
guaranteed [18]. However, if a has different signs on the two sides of the interface, this determinant may be zero. Fortu-
nately, for sign-changed problems, the non-existence of c1 and c2 happens at different a’s when p and q vary. We can alter
the order p and q to avoid occurrence of zero determinant.
Table 1
The determinant of the linear system for solving c1 and c2 when two polynomials of
degree p and q are used to approximate u on the left (minus) and right (plus) side of
the interface, respectively. Here, a uniform mesh with mesh size h is applied. The
interface is located at x̂ ¼ xi þ ah for some i and b = 1 � a. The symbols a� and a+ are
the coefficients on the left (�) and right (+) side of the interface.

p q The determinant Dp,q of the linear system for solving c1 and c2

1 1 a�b + a+a
2 1 a�b(1 + 2a) + a+a(1 + a)
1 2 a�b(1 + b) + a+a(1 + 2b)
2 2 a�b(1 + b)(1 + 2a) + a+a(1 + a)(1 + 2b)
3 2 a� b(1 + b)(3a2 + 6a + 2) + a+a(1 + a)(2 + a)(1 + 2 b)
2 3 a�b(1 + b)(2 + b)(1 + 2a) + a+a(1 + a)(3b2 + 6b + 2)
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Let us determine the orders we should choose on different sides of the interface to avoid the singularity of the local linear
system. We introduce a normalized determinant fp,q(a,q) = Dp,q/a�, where q = a+/a� and we assumed that ja�j 6 ja+j without
loss of generality. Let ap,q(q) be the solution of fp,q(ap,q(q),q) = 0. We claim that both fp+1,q(ap,q(q),q) – 0 and
fp,q+1(ap,q(q),q) – 0. Below, we prove this claim for p = q = 2. First, the relation of q and a2,2 is
Fig. 1.
(16). (F
q ¼ �ð1� a2;2Þð2� a2;2Þð1þ 2a2;2Þ
a2;2ð1þ a2;2Þð3� 2a2;2Þ

: ð12Þ
By substituting (12) in f3,2(a2,2(q),q) and f2,3(a2,2(q),q), we arrive at
f3;2ða2;2ðqÞ;qÞ ¼ a2;2ðqÞð1� a2;2ðqÞÞð2� a2;2ðqÞÞð1þ a2;2ðqÞÞ– 0; ð13Þ

f2;3ða2;2ðqÞ;qÞ ¼ �
ð1� a2;2ðqÞÞ2ð2� a2;2ðqÞÞ2ð1þ 2a2;2ðqÞÞ

ð3� 2a2;2ðqÞÞ
– 0; ð14Þ
since 0 < a2,2(q) < 1. Fig. 1 shows the values of f3,2(a2,2(q),q) and f2,3(a2,2(q),q) when q varies from �20 to �1. Moreover, we
look for the asymptotic behaviors of f3,2 and f2,3. It follows from Eq. (12). For q��1 and 0 < a2,2 < 1, we
a2;2ðqÞ � �
2
3
q�1: ð15Þ
By applying (15), the asymptotic behaviors of these two functions are
f3;2ða2;2ðqÞ;qÞ � �
4
3
q�1; f 2;3ða2;2ðqÞ;qÞ � �

4
3
; for q� �1: ð16Þ
The analysis above indicates that we should use higher order approximation in the region with a larger absolute value of a in
order to get a stable solution. This motivates us to define the following adaptive-order strategy:

1. First, choose the orders p and q to approximate u on different sides of the interface.
2. If fp,q(a,q) is smaller than a prescribed tolerance, then the order in the region with a larger absolute value of a is increased

by 1.

A generalized pseudo code is given in the Appendix A.
Once we have the local approximated polynomial with p, q P 2, we can approximate u00(xi) by differentiating this local

polynomial twice to get the following approximation:
u00ðxiÞ ¼
1

h2 Lðui�pþ1:iþq; ½u�x̂; ½au0�x̂Þ þ Oðhminfp;qg�1Þ; ð17Þ
where the operator L is a linear combination of grid values ui�p+1:i+q and the jump conditions (½u�x̂ and ½au0�x̂). For example,
when p = q = 2,
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The values of f3,2(a2,2(q),q) and f2,3(a2,2(q),q) when q varies from �20 to �1. The blue dashed lines are the asymptotic behavior computed from Eq.
or interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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Lðui�pþ1:iþq; ½u�x̂; ½au0�x̂Þ ¼
1

D2;2

ðbþ bÞ2a� þ að1þ 2bÞaþ

�ðbþ b2Þa� � ð1þ aÞð1þ 2bÞaþ

ð1þ bÞ2aþ

�b2aþ

�ð1þ 2bÞaþ

�ðbþ b2Þh

2666666666664

3777777777775

T
ui�1

ui

uiþ1

uiþ2

½u�x̂
½au0�x̂

266666666664

377777777775
: ð18Þ
In some cases, we may also use lower-order approximation. If p = 1, we can only approximate u0(xi+1/2) in X� by differenti-
ating the local polynomial once:
u0ðxiþ1=2Þ �
1
h
Dðui:iþq; ½u�x̂; ½au0�x̂Þ; ð19Þ
where the operator D is a linear combination of grid values ui:i+q and the jump conditions (½u�x̂ and ½au0�x̂). For example, when
p = 1 and q = 2,
Dðui�pþ1:iþq; ½u�x̂; ½au0�x̂Þ ¼
1

D1;2

�ð1þ 2bÞaþ

ð1þ bÞ2aþ

�b2aþ

�ð1þ 2bÞaþ

�ðbþ b2Þh

26666664

37777775

T ui

uiþ1

uiþ2

½u�x̂
½au0�x̂

26666664

37777775: ð20Þ
And the second order derivative u00(xi) is approximated by
u00ðxiÞ �
1
h
ðu0ðxiþ1=2Þ � u0ðxi�1=2ÞÞ;
where u0(xi�1/2) is approximated by the standard central finite difference method since xi�1 and xi are in the same domain.
Notice that the jump conditions ½u�x̂ and ½au0�x̂ are trivial in one dimension, we can omit these two terms in one dimension.

However, they are not trivial in higher dimensions, especially when the normal vectors are not parallel to the coordinate
direction. Therefore, we use the general forms in one dimension. The coefficient of ½au0�x̂ listed in Table 2 will be used in
the derivations in two dimensions. In addition, this study is an augmented version of the coupling interface method partly
because we allow the orders of interpolations on different sides of the interfaces may be different. The cases p = q = 1 and
p = q = 2 correspond respectively to the first order version (CIM1,p = q = 1) and the second order version (CIM2,p = q = 2)
of the coupling interface method [18] in one dimension.

2.2. Two-dimensional problems

In two-dimensional problems, the eigenvalue problem (1) is reduced to
� 1
mðx; yÞr2 � ðaðx; yÞr2uðx; yÞÞ ¼ kuðx; yÞ; x 2 X; ð21Þ
where r2 = (@/@x,@/@y). We drop the subindex of r2 in the later derivation for simplicity. Suppose that domain
X = [0,L] � [0,L] is a square and a uniform grid (xi,yj) = (ih, jh) is adopted, where h = L/N. The notation ui1 :i2 ;j1 :j2 means all
the grid values ui,j, i1 6 i 6 i2, j1 6 j 6 j2. Standard finite difference discretization is used for stencils which are away from
the interface. At a point near the interface, i.e., where the stencils of the standard finite difference discretization are not
in the same region, a dimension-by-dimension approach is used. Without loss of generality, suppose that (xi,yj) is a point
near the interface and lies in X�. The abbreviation ui,j = u(xi,yj) is used for simplicity. A grid segment is a segment which con-
nects two nearest grid points. Here we first consider two different cases of intersection which occur most often: C intersects
either one grid segment (see Fig. 2(a)) or two grid segments in different directions, see Fig. 2(b). In these two cases, ACIM2 is
adoptable. Here we have assumed that the mesh size is fine enough to resolve the geometry of the interfaces and there is at
most one intersection in one grid segment. This is valid when the mesh size is very fine. If the mesh is not very fine, there
may be more than one intersection in a grid segment. In this situation, we use the following criteria:
fficients of ½au0 �x̂ in the derivation when p and q vary. When p = 1 or q = 1, the coefficient is used in D. When p, q P 2, the coefficient is used in L. Here we
that h = 1. Scaling for h – 1 is required.

(1,1) (2,1) (1,2) (2,2) (3,2) (2,3)

ficient � b
D1;1

� b
D2;1

� bðbþ1Þ
D1;2

� bðbþ1Þ
D2;2

� bðbþ1Þ
D3;2

� 2bðbþ1Þðbþ2Þ
D2;3



Fig. 2. Intersection of interface and the grid segments. Case 1: the interface intersects the grid segment in the x-direction only. Case 2: the interface
intersects grid segments in both x- and y-directions. The regions colored by light yellow and white are X� and X+, respectively. The disks and circles are the
grid points in X� and X+, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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	 If the two ends of the grid segment are not in the same domain, we can choose any one of the intersections in the fol-
lowing derivation if there is more than one intersection.
	 If the two ends of the grid segment are in the same domain, no special treatment is needed even if there are intersections

in the grid segment.

In addition, this situation will occur when the interface is complicated. The issue of complex interfaces will be discussed
later in this section.

The interface intersects the grid segment in the x-direction only Suppose that the intersection of the interface and the grid
line is lying in [xi,xi+1) � {yj} (we label the intersection as r1 = (xi + a1h,yj)). In this case, the following terms can be approx-
imated by the nearby points
@2ui;j

@y2 ¼
ui;jþ1 � 2ui;j þ ui;j�1

h2 þ Oðh2Þ; ð22Þ

@2ui;j

@x@y
¼ ui;jþ1 � ui;j�1 � ui�1;jþ1 þ ui�1;j�1

2h2 þ OðhÞ: ð23Þ
Our goal is to derive a first-order finite difference approximation for @2ui;j

@x2 . The one-dimensional approach of @2ui;j

@x2 is derived by
using the jump conditions (3) and an artificial jump a @u

@x

� �
r1

:

@2ui;j

@x2 �
1

h2 Lxðui�p1þ1:iþq1 ;jÞ þ
r1

h
a
@u
@x

� �
r1

; ð24Þ
where Lx is a linear combination derived from the one-dimensional problem; p1 and q1 are the adaptive orders (the adaptive-
order strategy is used) of the local polynomials. The coefficient r1 of the jump data are explicitly written for the following
derivation. The formula of r1 is listed in Table 2 when p1 or q1 is less than 3. By using the jump conditions ½u�r1

¼ 0 and
½aru � n1�r1

¼ 0, the decomposition of the jump data is derived:
a
@u
@x

� �
r1

:¼ aþ
@u
@x

rþ1
� �

� a�
@u
@x

r�1
� �

¼ ð½a�t1 � e1Þru r�1
� �

� t1 ð25Þ
where [a] = a+ � a�; e1 = (1,0) is the Euclidean unit vector; n1 is the unit outer normal vector at the interface point r1;
t1 = (e1 � (e1 � n1)n1)/(ke1 � (e1 � n1)n1k) is the computed unit tangential vector at r1. Notice that when the interface is a ver-
tical straight line, i.e. n1 = e1, we would set t1 = e2 and get t1 � e1 = 0. The jump a @u

@x

� �
r1

would be identical to ½aru � n�r1
, which

is zero due to the jump condition (4). For the sake of reducing the stencil, only the order of truncation error is the main con-
cern. Therefore, the gradient in Eq. (25) is approximated by
ruðr�1 Þ ¼
1
h ðui;j � ui�1;jÞ þ 1

2þ a1
� �

h @2ui;j

@x2

1
2h ðui;jþ1 � ui;j�1Þ þ a1h @2ui;j

@x@y

24 35þ Oðh2Þ: ð26Þ
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By combining Eqs. (23)–(26), we arrive at
1� 1
2
þ a1

	 

r1½a�ðt1 � e1Þ2

	 

@2ui;j

@x2 ¼
1

h2 ðLxðui�p1þ1:iþq1 ;jÞ þ T xðui�1:i;j�1:jþ1ÞÞ þ OðhÞ; ð27Þ
where T x is a linear combination which collects the approximation in the gradient term,
T xðui�1:i;j�1:jþ1Þ ¼ r1½a�t1 � e1
ui;j � ui�1;j

1
2 ðð1þ a1Þðui;jþ1 � ui;j�1Þ � a1ðui�1;jþ1 � ui�1;j�1ÞÞ

" #
� t1: ð28Þ
The left hand side of Eq. (27) may be zero with the sign-changed coefficients. If the left hand side is smaller than the toler-
ance, the order in the region with a large absolute value of a will be increased by 1. In other words, if ja�jP ja+j, then p1 is
increased by 1. Otherwise q1 is increased by 1. By combining (22) and (23), the discretization of (21) is obtained.

On the other hand, if the interface intersects grid segments in the y-direction only, the derivation is the same by simply
exchanging x and y, e1 and e2 due to the x-y symmetry.

The interface intersects grid segments in both x- and y-directions Suppose that the intersections of the interface and the grid
line are lying in [xi,xi+1) � {yj}(we label the intersection as r1 = (xi + a1h,yj)) and {xi} � [yj,yj+1) (we label it as r2 = (xi,yj + a2h)).
In this case, only the cross derivative terms can be approximated by the nearby points
@2ui;j

@x@y
¼ ui;j � ui;j�1 � ui�1;j þ ui�1;j�1

h2 þ OðhÞ: ð29Þ
A dimension-by-dimension approach in the x- and y-directions is applied by using jump condition (3) and two artificial jump
conditions a @u

@x

� �
r1

and a @u
@y

h i
r2

:

@2ui;j

@x2 �
1

h2 Lxðui�p1þ1:iþq1 ;jÞ þ
r1

h
a
@u
@x

� �
r1

; ð30Þ

@2ui;j

@y2 �
1

h2 Lyðui;j�p2þ1:jþq2
Þ þ r2

h
a
@u
@y

� �
r2

; ð31Þ
where the coefficients r1 and r2 of the jump data are explicitly written for the following derivation; (p1,q1) and (p2,q2) are
the adaptive orders of the local polynomials in the x- and y-directions, respectively. The decomposition of the jump data is
similar to the previous case:
a
@u
@x

� �
r1

:¼ aþ
@u
@x

rþ1
� �

� a�
@u
@x

r�1
� �

¼ ð½a�t1 � e1Þru r�1
� �

� t1; ð32Þ

a
@u
@y

� �
r2

:¼ aþ
@u
@y

rþ2
� �

� a�
@u
@y

r�2
� �

¼ ð½a�t2 � e2Þru r�2
� �

� t2; ð33Þ
where e1 = (1,0) and e2 = (0,1) are the Euclidean unit vectors; n1 and n2 are the unit outer normal vectors at the interface
point r1 and r2, respectively; t1 = (e1 � (e1 � n1)n1)/(ke1 � (e1 � n1)n1k) and t2 = (e2 � (e2 � n2)n2)/(ke2 � (e2 � n2)n2k) are the
computed unit tangential vectors at r1 and r2, respectively. The gradient terms in Eqs. (32) and (33) are approximated by
ru r�1
� �

¼
1
h ðui;j � ui�1;jÞ þ 1

2þ a1
� �

h @2ui;j

@x2

1
h ðui;j � ui;j�1Þ þ 1

2 h @2ui;j

@y2 þ a1h @2ui;j

@x@y

24 35þ Oðh2Þ; ð34Þ

ru r�2
� �

¼
1
h ðui;j � ui�1;jÞ þ 1

2 h @2ui;j

@x2 þ a2h @2ui;j

@x@y

1
h ðui;j � ui;j�1Þ þ 1

2þ a2
� �

h @2ui;j

@y2

24 35þ Oðh2Þ: ð35Þ
By combining Eqs. (29)–(35), we arrive at a couple equation:
M
@2ui;j

@x2

@2ui;j

@y2

24 35 ¼ 1

h2

Lxðui�p1þ1:iþq1 ;jÞ þ T xðui�1:i;j�1:jÞ
Lyðui;j�p2þ1:jþq2

Þ þ T yðui�1:i;j�1:jÞ

� �
; ð36Þ
where
M ¼
1� 1

2þ a1
� �

r1½a�ðt1 � e1Þ2 � 1
2 r1½a�ðt1 � e1Þðt1 � e2Þ

� 1
2 r2½a�ðt2 � e1Þðt2 � e2Þ 1� 1

2þ a2
� �

r2½a�ðt2 � e2Þ2

" #
ð37Þ
and the linear combinations T x and T y are
T xðui�1:i;j�1:jÞ ¼ r1½a�ðt1 � e1Þ
ui;j � ui�1;j

ð1þ a1Þðui;j � ui;j�1Þ � a1ðui�1;j � ui�1;j�1Þ

� �
� t1; ð38Þ
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T yðui�1:i;j�1:jÞ ¼ r2½a�ðt2 � e2Þ
ð1þ a1Þðui;j � ui�1;jÞ � a1ðui;j�1 � ui�1;j�1Þ

ui;j � ui;j�1

� �
� t2: ð39Þ
The determinant of M may be zero when considering the problem with the sign-changed coefficients.
If it is smaller than the tolerance, the order in the region with a large absolute value of a will increases by 1. The details of

altering p1:2 and q1:2 are given when we discuss the adaptive-order strategy for complex interfaces.
It is noted that a high order approximation can be achieved by similar derivations. For example, when p1, q1, p2 and q2 are

greater than 4, a fourth order approximation of Eq. (21) can be derived. But the approximation of the gradient at the interface
and the cross term is more complicated and highly depends on the geometry of the interface. We omit the derivation of the
higher order scheme here.
2.3. The adaptive-order strategy for complex interfaces in two dimensions

For complex interfaces, how to choose the grid points is the main concern. For example, in Fig. 2, if the grid points
(xi�1:i,yj), (xi,yj�2:j) and (xi�1,yj�1) are in the domain X� and the grid points (xi+1:i+2,yj) and (xi,yj+1:j+2) are in the domain
X+, this adaptive-order strategy is said to be feasible at the grid point (xi,yj) for the orders (p1,q1) = (2,2) and
(p2,q2) = (3,2). If the interface is simple, the high order scheme is usually feasible. If a high order scheme is not feasible,
the grid point is classified as an exceptional point. Instead, lower-order approximations should be applied at those excep-
tional points, see Fig. 3. The principles of adaptive-order strategy can now be stated as follows.

	 When a grid point is not an interior point, we check the feasibility for the orders p1:2 = q1:2 = 2 first. If it is not feasible, the
grid point is an exceptional point and a lower-order approximation is applied.
	 If it is feasible, the orders p1:2, q1:2 will change in the dimension-by-dimension approach as well as in the inversion of the

coupling equation or system. They are changed by the following criteria:
1. The order of interpolation is increased by 1 in the region with a larger absolute value of a.
2. If it is not feasible for the orders in the first criterion, the order of interpolation is increased by 1 in the region with a

smaller absolute value of a.
3. In the first and the second criteria, if there are two choices (x- or y-direction) in the inversion of the coupling system,

the smaller one will be increased by 1. If they are the same, the choice is free (here we choose the x-direction in our
code).

4. If it is not feasible for the orders in the first and the second criteria, the order in the opposite region of the grid point is
decreased by 1, i.e., q1:2 is decreased by 1. If q1 or q2 is zero after the decreasing, the grid point is classified as an excep-
tional point and a lower-order approximation is applied.

5. In the fourth criteria, if there are two choices (x- or y-direction) in the inversion of the coupling system, the larger one
will be decreased by 1. If they are the same, the choice is free (here we choose the x-direction in our code).

Here the orders in the lower-order approximation are p1:2 = q1:2 = 1. The derivation of the lower-order approximation is
similar to the CIM1 in [18]. The only difference is the adaptive-order strategy. Therefore, we only provide the relevant for-
mulas for Fig. 3(a):
Example of exceptional points. The regions colored by light yellow and white are X� and X+, respectively. The disks and circles are the grid points in
X+, respectively. The grid points marked by red squares are exceptional points. (For interpretation of the references to colour in this figure legend,

der is referred to the web version of this article.)
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	 Dimension-by-dimension approach:

@uiþ1=2;j

@x
� 1

h
Dþx ui�1þpþ1 :iþqþ1 ;j

� �
þ r1 a

@u
@x

� �
r1

; ð40Þ

@ui;jþ1=2

@x
� 1

h
Dþy ui;j�1þpþ2 :jþqþ2

� �
þ r2 a

@u
@x

� �
r2

; ð41Þ

@ui�1=2;j

@x
� 1

h
D�x ui�1þp�1 :iþq�1 ;j

� �
þ r3 a

@u
@x

� �
r3

; ð42Þ

@ui;j�1=2

@y
� 1

h
ðui;j � ui;j�1Þ: ð43Þ

Notice that p
1:2 and q
1:2 are adaptive-orders and all the first derivatives are in the domain X�.

	 The decomposition of the jump data:
a
@u
@x

� �
r1

¼ ð½a�t1 � e1Þru r�1
� �

� t1; ð44Þ

a
@u
@y

� �
r2

¼ ð½a�t2 � e2Þru r�2
� �

� t2; ð45Þ

a
@u
@x

� �
r3

¼ ð½a�t3 � e1Þru r�3
� �

� t3: ð46Þ

The unit tangential vectors t1:3 are computed by the unit normal vectors n1:3 at r1:3, respectively.

	 The gradient terms:
ru r�1
� �

� @uiþ1=2;j

@x
;
@ui;jþ1=2

@y

� �
; ð47Þ

ru r�2
� �

� @uiþ1=2;j

@x
;
@ui;jþ1=2

@y

� �
; ð48Þ

ru r�3
� �

� @ui�1=2;j

@x
;
@ui;j�1=2

@y

� �
: ð49Þ
	 After substituting Eqs. (44)–(49) in Eqs. (40)–(43), we will get a 4 � 4 linear system for (@/@x)ui±1/2,j and (@/@y)ui,j±1/2. If the
determinant of the matrix is less than the tolerance, the adaptive-order strategy is applied. After inverting the matrix, (@/
@x)ui±1/2,j and (@/@y)ui,j±1/2 are expressed as the linear combination of the grid values. And the second order derivatives are
approximated by:
@2ui;j

@x2 �
1
h

@uiþ1=2;j

@x
� @ui�1=2;j

@x

	 

; ð50Þ

@2ui;j

@y2 �
1
h

@ui;jþ1=2

@y
� @ui;j�1=2

@y

	 

: ð51Þ
The criteria of the adaptive-order strategy in the lower-order approximation is almost the same as those in the high order
approximation expect the fourth and the fifth criteria. We cannot decrease the order in the lower-order approximation be-
cause the order is only one. If it is not feasible after increasing the orders in both regions, we refine the mesh size.

3. Eigenvalue problems in surface plasmon

Another application with sign-changed coefficients is plasmonics which also involves eigenvalue problems. It is consid-
ered to be the strongest interplay of both optical and electronic data transfer along a tiny metal [26]. It has found important
applications in modern nano-technology such as magneto-optic data storage, microscopy, solar cells, sensors for detecting
biological molecules, and plasmonic crystals [27]. Plasmonic crystals consist of periodic arrays of metallic and dielectric
materials, and are useful to transmit sub-wavelength signals [28]. The physical properties of the wave guided mode in sur-
face plasmon are discussed in reference [29]. However, convergence analysis is not provided. The derivation of the one-
dimensional problem is clear if we integrate the order-altering strategy in the derivation. Therefore, we briefly state a sophis-
ticated version of the two-dimensional eigenvalue problem here. For more details, we refer to [29].

Suppose the plasmonic crystal is homogeneous in the z-axis and the electromagnetic wave also propagates in this axial
direction. The equations of the axial electric component E and magnetic component H are:
�r2 �
er2E

K

	 

�r2 �

kzr2H
xK

	 

¼ eE; in X n C; ð52Þ

� r2 �
lr2H

K

	 

þr2 �

kzr2E
xK

	 

¼ lH; in X n C: ð53Þ
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where K ¼ x2el� k2
z ; kz is the axial wave number; x is the frequency; and e and l are the permittivity and permeability of

the medium, respectively. We assume that X is a square. The Bloch boundary condition is applied at the cell boundary
Eðxþ L; yÞ ¼ expðikxLÞEðx; yÞ; ð54Þ
Eðx; yþ LÞ ¼ expðikyLÞEðx; yÞ; ð55Þ
Hðxþ L; yÞ ¼ expðikxLÞHðx; yÞ; ð56Þ
Hðx; yþ LÞ ¼ expðikyLÞHðx; yÞ; ð57Þ
where (kx,ky) is the Bloch wave vector, and L is the one side length of a cell. At the interface, the jump conditions for E and H
are
½E�C ¼ 0; ð58Þ
½H�C ¼ 0; ð59Þ
e
K
r2E � n

h i
C
þ k

xK
r2H � t

� �
C

¼ 0; ð60Þ

l
K
r2H � n

h i
C
� k

xK
r2E � t

� �
C

¼ 0: ð61Þ
Here we adopt the Drude model for the permittivity of metals without the electron collision rate:
eðx; y; xÞ ¼ e0 1�
x2

p

x2

 !
; for ðx; yÞ 2metal;
where e0 is the permittivity constants in vacuum and xp is the plasmon frequency. When the frequency x is under the plas-
mon frequency xp, the permittivity changes its sign in the metal part. As a result, these plasmonic modes are highly localized
and oscillate on the metal-dielectric interfaces.

Eqs. (52) and (53) can be formulated as an eigenvalue problem of the axial wavenumber kz:
r2
2 þx2el

� �
E ¼ k2

z E; ð62Þ

r2
2 þx2el

� �
H ¼ k2

z H: ð63Þ
In this formulation, the structure of the metal-dielectric composite material is considered to be periodic, and the permittivity
and permeability of the metallic component are functions of frequency. But another difficulty is that the jump conditions
(60) and (61) involve the axial wave number. By introducing two auxiliary variables on the interface
JE :¼ ½er2E � n�C; ð64Þ
JH :¼ ½lr2H � n�C; ð65Þ
the jump conditions (60) and (61) can be formulated as a quadratic eigenvalue problem of axial wave number kz:
C
1
l
r2E � n

� �
C

þ kz

x
1
el
r2H � t

� �
C

	 

¼ k2

z JE; ð66Þ

C
1
e
r2H � n

� �
C

� kz

x
1
el
r2E � t

� �
C

	 

¼ k2

z JH; ð67Þ
where C = x2e+e�l+l�. We drop the subindex of r2 in the later derivation for simplicity.
We partition the unit cell X = [0,L] � [0,L] into N2 squares uniformly with mesh size h ¼ L

N. The Cartesian grid points are
(xi,yj) :¼ (ih, jh), 1 6 i,j 6 N. We use the abbreviations Ei,j for E(xi,yj) and E1:N,1:N for the unknowns (E1,1, . . . ,EN,N). On the inter-
face C, a set of uniformly distributed grids based on arc length on C is adopted. They are labeled by ðx̂‘; ŷ‘Þ, ‘ = 1, . . . , NJ. No-
tice that these coordinates are used only for the interfacial variables. The interface is represented by a levelset function. At
these points, the auxiliary interfacial variables (JE,‘, JH,‘) are defined. In an interior Cartesian grid point, Eqs. (62) and (63) are
discretized by the standard central finite difference method. At a Cartesian grid point that is adjacent to the interface, the
following coupling interface method is adopted. We only illustrate this idea for the case that C intersects both x- and y-direc-
tions. Suppose (xi,yj) is the grid point at which we want to derive a finite difference equation. Let r1 = (xi + a1h,yj) and
r2 = (xi,yj + a2h) be the intersections of C and the x and y-axis from (xi,yj); and r̂‘ ¼ ðx̂‘; ŷ‘Þ ¼ ðxi þ nh; yj þ ghÞ be the closest
interface grid point to (xi,yj). Our goal is to derive the finite difference approximations forr2

2Ei;j andr2
2Hi;j in terms of the grid

data and the interfacial variables. In this case, only the cross derivative terms can be approximated by the nearby points
@2Ei;j

@x@y
¼ Ei;j � Ei;j�1 � Ei�1;j þ Ei�1;j�1

h2 þ OðhÞ: ð68Þ
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The difficulty is that the jump conditions are located at different locations. In order to derive a finite difference approxima-
tion for @2Ei;j

@x2 , the jump data at a projected point on the grid line is considered:
e
@E
@x

� �
ðxiþnh;yjÞ

¼ e
@E
@x

� �
r̂‘

� gh e
@2E
@x@y

" #
r̂‘

þ Oðh2Þ: ð69Þ
We apply the one-dimensional method along the grid line y = yj by considering two jump conditions (58) and (69):
@2Ei;j

@x2 ¼
1

h2 LxðEi�p1þ1:iþq1 ;jÞ þ
r1

h
e
@E
@x

� �
r̂‘

� gh e
@2E
@x@y

" #
r̂‘

0@ 1Aþ OðhÞ: ð70Þ
It is noted that the linear combination Lx is dependent on n. Similarly, in the y-direction,
@2Ei;j

@y2 ¼
1

h2 LyðEi;j�p2þ1:jþq2
Þ þ r2

h
e
@E
@y

� �
r̂‘

� nh e
@2E
@x@y

" #
r̂‘

0@ 1Aþ OðhÞ: ð71Þ
The cross derivative term at r̂‘ is approximated by
@2E
@x@y

r̂�‘
� �

¼ @
2Ei;j

@x@y
þ OðhÞ; @2E

@x@y
r̂þ‘
� �

¼ @
2Eiþ1;jþ1

@x@y
þ OðhÞ; ð72Þ
where @2Eiþ1;jþ1
@x@y can be approximated by the linear combination of the nearby grid values, e.g. 1

h2 ðEiþ2;jþ2 � Eiþ2;jþ1 � Eiþ1;jþ2þ
Eiþ1;jþ1Þ, since (xi+1,yj+1) is not near the interface. In the next step, the interfacial variables at interface grid points are used.

Re-expressing e @E
@x

� �
r̂‘

and e @E
@y

h i
r̂‘

in terms of normal and tangential derivatives of E at r̂‘:
e
@E
@x

� �
r̂‘

¼ JE;‘n̂ � e1 þ ½e�̂t � e1rEðr̂�‘ Þ � t̂; ð73Þ

e
@E
@y

� �
r̂‘

¼ JE;‘n̂ � e2 þ ½e�̂t � e2rEðr̂�‘ Þ � t̂; ð74Þ
where n̂ and t̂ are the unit normal and tangential vectors of C at r̂‘, respectively. Here we have used ½rE � t�r̂‘ ¼ 0. The one-
side gradient can be expressed as
rE r̂�‘
� �

¼
1
h ðEi;j � Ei�1;jÞ þ 1

2þ n
� �

h @2Ei;j

@x2 þ gh @2Ei;j

@x@y

1
h ðEi;j � Ei;j�1Þ þ 1

2þ g
� �

h @2Ei;j

@y2 þ nh @2Ei;j

@x@y

24 35þ Oðh2Þ: ð75Þ
By combining Eqs. (68)–(75), we deduce a coupling equation for the second order partial derivatives @2Ei;j

@x2 and @2Ei;j

@y2 .
M
@2Ei;j

@x2

@2Ei;j

@y2

24 35 ¼ 1

h2

LxðEi�p1þ1:iþq1 ;jÞ þ T xðEi�1:i;j�1:j; Eiþ1:iþ2;jþ1:jþ2Þ
LyðEi;j�p2þ1:jþq2

Þ þ T yðEi�1:i;j�1:j; Eiþ1:iþ2;jþ1:jþ2Þ

� �
; ð76Þ
where the matrix M is
M ¼
1� 1

2þ n
� �

r1½e�ðt̂ � e1Þ2 � 1
2 r1½e�ðt̂ � e1Þðt̂ � e2Þ

� 1
2 r2½e�ðt̂ � e1Þðt̂ � e2Þ 1� 1

2þ g
� �

r2½e�ðt̂ � e2Þ2

" #
: ð77Þ
If the determinant of M is smaller than the tolerance, the adaptive-order strategy is applied. The criteria are the same as
those in the previous section. Finally, we arrive at
@2Ei;j

@x2 ¼ LE;xðEi�1:iþ2;j�1;jþ2; JE;‘Þ þ OðhÞ; ð78Þ

@2Ei;j

@y2 ¼ LE;yðEi�1:iþ2;j�1;jþ2; JE;‘Þ þ OðhÞ; ð79Þ
where the symbols LE;x and LE;y represent the linear combinations. Then the finite difference scheme for r2Ei,j is
r2Ei;j ¼ ðLE;x þ LE;yÞðEi�1:iþ2;j�1;jþ2; JE;‘Þ þ OðhÞ: ð80Þ
Similarly, we can get the finite difference approximation for the H field:
r2Hi;j ¼ ðLH;x þ LH;yÞðHi�1:iþ2;j�1;jþ2; JH;‘Þ þ OðhÞ: ð81Þ



Y.-C. Shu et al. / Journal of Computational Physics 229 (2010) 9246–9268 9257
Discretize the interface conditions at interfacial grid points First, we express the left hand side of the interface conditions (66)
and (67) in terms of the interfacial variables and one-side derivatives:
1
l
rE � n̂

� �
r̂‘

¼ 1
eþlþ

JE;‘ þ
e�l� � eþlþ

eþlþl�
rEðr̂�‘ Þ � n̂;

1
el
rH � t̂

� �
r̂‘

¼ e�l� � eþlþ
eþe�lþl�

rHðr̂�‘ Þ � t̂;

1
e
rH � n̂

� �
r̂‘

¼ 1
eþlþ

JH;‘ þ
e�l� � eþlþ

lþeþe�
rH r̂�‘

� �
� n̂;

1
el
rE � t̂

� �
r̂‘

¼ e�l� � eþlþ
eþe�lþl�

rE r̂�‘
� �

� t̂:
These normal and tangential derivatives can be approximated by the derivatives along the x and y-direction. For instance,
rE r̂�‘
� �

can be approximated in terms of nearby grid data and the interfacial data by using (68), (75), (78) and (79). Finally,
the interfacial operators in (66) and (67) are approximated by linear combinations of grid data and interfacial variables:
C
1
l
rE � n̂

� �
r̂‘

¼ J E;n̂ðEi�1:iþ2;j�1;jþ2; JE;‘Þ þ Oðh2Þ; ð82Þ

C
x

1
el
rH � t̂

� �
r̂‘

¼ J H;̂tðHi�1:iþ2;j�1;jþ2; JH;‘Þ þ Oðh2Þ; ð83Þ

C
1
e
rH � n̂

� �
r̂‘

¼ J H;n̂ðHi�1:iþ2;j�1;jþ2; JH;‘Þ þ Oðh2Þ; ð84Þ

C
x

1
elrE � t̂
� �

r̂‘

¼ J E;̂tðEi�1:iþ2;j�1;jþ2; JE;‘Þ þ Oðh2Þ; ð85Þ
where the symbols J E;n̂; J H;̂t; J H;n̂ and J E;̂t represent the linear combinations. The discretized interface conditions become
J E;n̂ðEi�1:iþ2;j�1;jþ2; JE;‘Þ þ kJ H;̂tðHi�1:iþ2;j�1;jþ2; JH;‘Þ ¼ k2JE;‘ þ Oðh2Þ; ð86Þ
J H;n̂ðHi�1:iþ2;j�1;jþ2; JH;‘Þ � kJ E;̂tðEi�1:iþ2;j�1;jþ2; JE;‘Þ ¼ k2JH;‘ þ Oðh2Þ: ð87Þ
Combining the discretization (80), (81), (86) and (87) with the Bloch boundary condition, we arrive a quadratic eigenvalue
problem:
AmixUmix þ kBmixUmix ¼ k2Umix;
where Amix and Bmix are 2(N2 + NJ) � 2(N2 + NJ) matrices and
Umix ¼ ½E1:N;1:N;H1:N;1:N; JE;1:NJ
; JH;1:NJ

�T :
We solve this quadratic eigenvalue problem by doubling the matrix to transfer the problem to a standard eigenvalue
problem:
0 I
A B

� �
Umix

kUmix

� �
¼ k

Umix

kUmix

� �
:

4. Numerical results

Below, we perform convergence tests for one- and two-dimensional problems.

4.1. Convergence validation for population dynamics

For the one-dimensional problem, Eq. (6) with piecewise constant, the exact solution can be easily derived:
uðxÞ ¼ c1eif1x þ c2e�if1x; x < x̂;

c3eif2x þ c4e�if2x; x > x̂;

(
ð88Þ
where f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km�=a�

p
and f2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmþ=aþ

p
. The Robin boundary conditions (Eqs. (7) and (8)) and interface conditions (Eqs. (9)

and (10)) give four linear equations for the undetermined coefficients c1:4. The determinant of the four equations is a func-
tion of k, x̂, L, c, m± and a±. When x̂, L, c, m±, a± are given, a numerical method is used to find k, which makes the determinant
zero in order to get a nontrivial solution of c1:4. The eigenfunction c1:4 is normalized by unity L2 norm of u. In the numerical
tests, we only show the result with Dirichlet boundary condition. The results with other boundary conditions are similar.
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Fig. 4. Log–log plots of the error in Example 1 versus the number of mesh N. In this case, X = [0,1], x̂ ¼ 0:5. Dirichlet boundary condition is applied. The
coefficients is chosen to be a� = �1, a+ = 1 and the growth rates are m� = 2, m+ = 1. N varies from 100 to 1000 with DN = 1. (a) and (b) are computed by
second order method while (c) and (d) are computed by fourth order method. The blue, green and red dots represent the errors of the first, second and third
eigenvalues and eigenfunctions, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Example 1. For the first example, the interface is set to the center of X = [0,1]. We choose a� = �1, a+ = 1, m� = 2 and m+ = 1.
When the number of mesh N is odd, the linear combinations of discretization at (N � 1)/2 and (N + 1)/2 cannot be solved
with the same order approximation on each side of the interface, i.e. p = q. The adaptive-order strategy is applied when N is
odd. Therefore, the effect of adaptive-order strategy can be shown. The exact eigenvalues with 10-digits are k1 =
�33.52204426, k2 = 56.46168338 and k3 = 104.7908422. They are found by using the ‘‘fzero” subroutine in MATLAB to test if
the determinant is zero. The log–log plot of errors of eigenvalues and eigenfunctions versus N is shown in Fig. 4. The error of
eigenfunction is measured with L1 norm of the difference between the exact and computed eigenfunctions. For each
eigenvalue, the errors are split to two lines. They correspond to even and odd numbers of mesh. The errors produced by
different order approximation are almost the same order. This shows that the adaptive-order strategy maintains the
accuracy and solves the nonexistence problem of linear combination. Regarding accuracy, the second order method is
computed by setting p, q P 2, and the fourth method is computed by setting p, q P 4. In all sub-figures in Fig. 4, the width of
the x-axis is 1, so the slope in the lines is the difference in the y-axis. We can see that the slopes of the lines in Fig. 4(a), (b) are
almost�2, and the slopes of lines in Fig. 4(c), (d) are almost�4. The second and fourth order convergences of the eigenvalues
and eigenfunction are clearly shown.
Example 2. In the second example, the location of the interface is chosen to be an irrational number x̂ ¼ 5 ln 5=16 near the
center of X. It will be located at different reference places in a cell when N varies. More precisely, if x̂ ¼ xi þ ah for some inte-
ger i, 0 6 a < 1, the reference location a varies with N. The situation is closer to a two-dimensional case with a complex inter-
face. The other parameters are the same as the first example. The log–log plot of errors of eigenvalues and eigenfunctions
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Fig. 5. Log–log plots of the error in Example 2 versus the number of mesh N. In this case, X = [0, 1], x̂ ¼ 5 ln 5=16. The Dirichlet boundary condition is
applied. The coefficients are chosen to be a� = �1, a+ = 1 and the growth rates are m� = 2, m+ = 1. N varies from 100 to 1000 with DN = 1. (a) and (b) are
computed by the second order method, while (c) and (d) are computed by the fourth order method. The blue, green and red dots represent the errors of the
first, second, and third eigenvalues and eigenfunctions, respectively. The black lines are reference lines. The slopes of reference lines are �2 in (a), (b) and�4
in (c), (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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versus N are shown in Fig. 5. An interesting thing is that the curves follow a specific pattern. The pattern is almost the same
as the error of using a rational number to approximate an irrational number, since the error depends on the reference loca-
tion a. Even though the curves are not a straight line, the convergence order somehow can be read from the reference lines.
The slopes of the reference lines are �2 in Fig. 5(a), (b) and �4 in Fig. 5(c), (d). The second and fourth order convergences of
this example are clearly shown.

Another issue is the condition number of the matrix. We use the scaled condition number, which is the condition number
divided by N2, since the condition number of the matrix will grow with the factor N2. Fig. 6 shows the log–log plots of the
scaled condition number versus the number of mesh N. The blue dots and the red circles are the scaled condition numbers
without and with the adaptive-order strategy, respectively. Here the adaptive-order strategy is applied when the tolerance is
0.15. When the adaptive-order strategy is applied, the scaled condition number is under controlled and about 0.01 to 0.1 times
the original. It shows that the condition number of the discretization matrix is controlled by the adaptive-order strategy. In
addition, the errors of eigenvalues and eigenfunctions are also smaller when the adaptive-order strategy is applied.
Example 3. The third example is a two-dimensional problem. The domain is set to be X = [�p,p] � [�p,p]. The interface is a
circle, x2 + y2 � p2/4 = 0, in the center of X. Inside the circle is X� and outside is X+. The coefficients and growth rate are set
to be a� = 1, a+ = �10 and m� = m+ = 1. The number of intervals in each side (N) varies from 40 to 200 with DN = 10. When
constructing the polynomials on both sides of interface, the orders of polynomials are chosen to be not less than two. But for
a two-dimensional eigenvalue problem, the nontrivial exact solution is hard to find. Therefore, a solution with a very fine
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grid is used as the exact solution instead. The convergence order is computed by comparison with the solution with a very
fine grid. But this will cause error in the convergence order, which estimated by the following. Suppose that the exact solu-
tion exists and the exact eigenvalue is k*. The eigenvalue computed by a numerical method with mesh size h is labeled by kh.
A convergence order m* is defined by
jkh � k�j 6 Chm� : ð89Þ
Let h0 be the mesh size of the very fine grid. Then we have
jkh � kh0 j 6 Cðhm� þ hm�
0 Þ: ð90Þ
The computed convergence order m0 corresponding to h0 is determined by a least square method
m0 ¼ LSðflog higNh
i¼1; flog jkhi

� kh0
jgNh

i¼1Þ; ð91Þ
where
LSðfv igNh
i¼1; fdigNh

i¼1Þ ¼
PNh

i¼1ðv i � �vÞðdi � �dÞPNh
i¼1ðv i � �vÞ2

: ð92Þ
Here the notation �v is the average of v. Suppose m* can be approximated by a least square method of
m� ¼ LSðflog higNh
i¼1; flog jkhi

� k�jgNh
i¼1Þ: ð93Þ
Then the relation of m* and m0 is
jm� �m0j 6
PNh

i¼1jmi � �mj h0
hi

� �m�

PNh
i¼1jmi � �mj2

; ð94Þ
where mi = loghi. The real convergence order m* is a range that satisfies Eq. (94).
By searching m* in Eq. (94), the maximum and the minimum of the convergence order for this two-dimensional example

is listed in Table 3. It shows that if the exact eigenvalues exist and the order can be found by comparison with the exact
eigenvalues, the eigenvalue computed by our method is second order convergence. In addition, the eigenfunction and the
convergence result are shown in Fig. 7.
Example 4. This example is a test for complex interfaces. All the parameters are the same as in Example 3 except the inter-
face, which is described in the polar coordinate
/ðr; hÞ ¼ r � p 1þ 0:15 sin 5 h� p
4

� �� �� �.
2 ¼ 0;
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, h = tan�1(y/x). In order to capture the shape of the interface and test the robustness of the method,

N varies from 80 to 200 with DN = 1. Fig. 8 shows the first and second eigenfunctions and the convergence result. By
Eq. (94), the proper convergence order of k1 and k2 is in [2.1861,2.4091] and [2.0260,2.2971], respectively. It shows that
a second order convergence is achieved. Due to the complexity of the interface, exceptional points are found for some
N in [80,200] and the high order approximation is not feasible at those exceptional points. Here, we use lower-order



Table 3
The convergence order estimated by Eq. (94) for Example 3.

Minimum of m* Maximum of m*

1st eigenvalues 1.9968 2.1306
2nd eigenvalues 1.9907 2.1256
3rd eigenvalues 2.0059 2.1382
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Fig. 7. Eigenfunctions (a,b,c) in Example 3 and the log–log plot (d) of the error of eigenvalues versus the number of mesh in one side. The eigenfunctions are
computed with N = 640. The domain X is set to be [�p,p] � [�p,p]. The interface, C : (x2 + y2) � p2/4 = 0, is a circle in the center of X. Inside the circle is X�

and outside is X+. The parameters are m� = m+ = 1, a� = 1, a+ = �10. The number of mesh in one side (N) varies from 40 to 200 with DN = 10. It is a second
order method by setting p, q P 2.
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approximations at the exceptional points. Since the number of exceptional points is O(1) at a fixed N, the convergence of
eigenvalue is still of second order. However, when exceptional points occur, the errors are larger.
4.2. Convergence validation for surface plasmon

In the numerical tests, we choose e+ = e0, the permittivity of air. The following non-dimensional transformation is used:
~x ¼ xL
2pc

; ~xp ¼
xpL
2pc

; ~k ¼ kL
2p

; ~x ¼ 2px
L
; ~y ¼ 2py

L
:

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðe0l0Þ

p
is the speed of light in vacuum; l0 is the permeability constants in vacuum. Since surface plasmon

waves often happen on the nano scale, the magnitudes of xpL and c are of the same order; we choose ~xp ¼ 1. For compu-
tation, we rescale E, H, JE and JH so that the rescaled quantities are of the same order of magnitude.
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Fig. 8. Eigenfunctions (a,b) in Example 4 and their log–log plots (c,d) of the error of eigenvalues versus the number of mesh in one side. The eigenfunctions
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eE ¼ ffiffiffiffiffi
e0
p

E; eH ¼ ffiffiffiffiffiffi
l0

p
H; eJE ¼ h ereE � nh i

; eJH ¼ h lreH � nh i
:

Notice that eJE and eJH are chosen to be mesh dependent, as the solution (E,H) decays exponentially on both sides of the inter-
faces. The best thickness we can compute is of order h. This leads to [rE � n] and [rH � n] being O(h�1). This is why we scaleeJE and eJH in this way.

Example 5. A benchmark problem is to compute the surface plasmonic wave in a layer structure, where an analytical
solution is available [20]. We shall compute the case when ~x ¼ 0:7, which is very close to the surface plasmonic frequency
~xsp ¼ 1=

ffiffiffi
2
p

: In this case, there are two surface plasmonic wave modes: a symmetric one and an anti-symmetric one; see
Fig. 9. The peaks occur at the interfaces and the surface plasmon modes are highly localized. Computation of such solutions
can reflect the quality of a numerical method. These analytical solutions and the corresponding eigenvalues ~k are obtained
from the analytic formula in [20] using Maple with 40 significant digits. Here, we choose the filled-in ratio of metal to be 40%.
The corresponding eigenvalue ~k is
~kexact ¼
3:5446728105477856717711645184356830360 symmetric case;
3:5245741559036641558099416554137229943 anti-symmetric case:

�

To view the convergence behavior of ~knumðNÞ, we calculate the true errors
eðNÞ :¼ j~knumðNÞ � ~kexactj;
for N ranging from 100 to 1000 with increment DN = 1. Fig. 10 is the log–log plot of these errors versus N. Notice that the
relative location of the interface x̂ in a cell varies in N. Let a ¼ ðx̂� xiÞ=h be this relative position. We observe that the worst
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cases happen when a = 0 (marked by magenta squares), where a second order accuracy is still achieved. When a = 0.5, the
error is much reduced and results in a third order accuracy. Evidently, this is due to the symmetry of the grids with respec-
tive to the interface, and certain cancellation occurs in the ACIM. Fig. 11 is the point-wise errors of these two eigenmodes
computed by the ACIM with grid number N = 1000. These plasmonic modes are normalized with unity L2 norm in a unit cell.
We see that the relative error in L1 is about 10�5.

We give two examples for convergence validation for two-dimensional surface plasmonic problems. One is the oblique
layer structure, while the other is the circular dielectric hole. For the first one, we have an analytic solution for comparison.
For the second one, no analytic solution is available. We use the fine grid result as a referenced solution for comparison. For
both cases, the ACIM achieves second order convergence.
Example 6 (Convergence validation for an oblique layer structure). We rotate the previous one-dimensional layer structure to
obtain a two dimensional analytical solution for comparison. In the previous one-dimensional layer structure, the eigenmode
has the form:
E ¼ eiðkxxþkzz�xtÞð0;0; EzðxÞÞ;
H ¼ eiðkxxþkzz�xtÞð0;HyðxÞ; 0Þ;
where kx is the Bloch wave number, (0,0,kz) is the propagation wave vector, and x is the frequency. The Ez field of the two
eigenmodes Ez(x) is shown in Fig. 9. The corresponding Hy field can be computed from Ez by the Maxwell equations.
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We now rotate the coordinate axes by an angle h on the y-z plane:
x

y

z

0BB@
1CCA ¼

1 0 0

0 cos h � sin h

0 sin h cos h

0BB@
1CCA

x0

y0

z0

0BB@
1CCA:
Then the eigenmode in the new coordinate system is
E0 ¼ eiðkxx0þkzðsin hy0þcos hz0Þ�xtÞð0; EzðxÞ sin h; EzðxÞ cos hÞ

¼ eiðkx0 x
0þky0 y

0þkz0 z
0 Þ�xtÞð0; Ey0 ðxÞ; Ez0 ðxÞÞ;

H0 ¼ eiðkxx0þkzðsin hy0þcos hz0Þ�xtÞð0;HyðxÞ cos h;�HyðxÞ sin hÞ

¼ eiðkx0 x
0þky0 y

0þkz0 z
0 Þ�xtÞð0;Hy0 ðxÞ;Hz0 ðxÞÞ;



1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
−3.5

−3

−2.5

−2

−1.5

−1

y = −2.0046 x + 2.0481

Fig. 15. The log–log plot of the error j~knumðNÞ � ~kref j of the eigenvalue corresponding to ~x ¼ 0:7 versus N (the number of intervals in each dimension) for N
ranging from 40 to 200 with DN = 10 in Example 7. The ratio of the radius of the dielectric hole and the length of an unit cell is r/a = 0.2. The referenced value
~kref is computed by the same method with N = 640.
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where ky0 ¼ kz sin h, kz0 ¼ kz cos h, and k2
y0 þ k2

z0 ¼ k2
z . So Ez0 ðx0; y0Þ ¼ eiky0 y

0
Ez0 ðx0Þ cos h and Hz0 ðx0; y0Þ ¼ �eiky0 y

0
Hy0 ðx0Þ sin h. We shall

use the two dimensional ACIM to compute these non-trivial eigenmodes ðEz0 ðx0; y0Þ;Hz0 ðx0; y0ÞÞ. Below, we shall drop the
primes for notational simplicity. Fig. 12 shows ðeE; eHÞ of the symmetric and anti-symmetric with ~x ¼ 0:7; ~kx ¼ 0; ~ky ¼ 2
and N = 320.

To test convergence, we vary N from 40 to 640 by doubling the resolution. We test with ~ky ¼ 0:5; 1; 1:5; 2; 2:5. Fig. 13
shows the convergence of the corresponding eigenvalue ~kz. It is shown that the convergence of ACIM is second order. Notice
that the order of accuracy decreases as ky increases because the resolution is not high enough to resolve the thickness of the
plasmonic wave, which becomes thinner as ~ky increases.
Example 7 (Convergence test for plasmonic wave modes in a cylindrical structure). The geometry of our second test problem is
a cylindrical dielectric hole sitting in the center of a unit metal cell. In this case, no analytical solution is available. Therefore,
for convergence study, we compute a low eigenmode of the surface plasmonic waves for ~x ¼ 0:7 and use a fine grid result
(640 � 640) as our referenced solution for comparison. Fig. 14 shows this reference eigenmode. The corresponding eigen-
value is denoted by kref. Then we compute knum(N) for N ranging from 40 to 200 with DN = 10. Fig. 15 shows the convergence
result. The least square fit of the error curve shows that a second order convergence is achieved.
5. Concluding remarks

In this paper, we propose an augmented coupling interface method (ACIM) for solving eigenvalue problems with sign-
changed coefficients and illustrate its performance by two applications, population dynamics and surface plasmon. The
method is formulated on a Cartesian grid by finite difference. The salient features of ACIM include an adaptive-order strategy
and an interfacial operator approach coupled with the coupling interface method (CIM) developed previously by the current
authors. The adaptive-order strategy of using interpolating polynomials of different orders on different sides of the interfaces
avoids the singularity of the local linear system and enables us to handle complex interfaces. The asymptotic analysis sug-
gests that the order should be increased on the side with a larger absolute value of the coefficient. The CIM integrated with
the interfacial operators approach further solves the difficulty that jump condition involves the eigenvalues. Numerical val-
idations of convergence are carefully performed. In one dimension, the numerical results show that ACIM with different or-
ders of interpolation near the interface gives second-order and fourth-order convergence of eigenvalues and eigenfunctions.
The condition number of the discretization matrix is controlled by the adaptive-order strategy and the accuracy of the eigen-
values is also improved. In two dimensions, due to the lack of the exact solutions in two dimensions, an error estimate is
proposed and shows that the method has a second-order accuracy in the sense of global convergence. The method is cur-
rently extended to be applicable to the problems in three dimensions. The results will be reported elsewhere.
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Appendix A. Algorithm

Algorithm 1. Generalized coupling interface method in one dimension

1:function (v,d) = CIM1D_GENERAL(a,a�,a+,p,q,r) . h = 1 is assumed
2: A 0p+q+2,p+q+2

3: for k 1, p do . For ui�p+1:i

4: Ap+1�k,1 1
5: for ‘ 1, p do
6: Ap+1�k,‘+1 (k � 1)Ap+1�k,‘/‘

7: end for
8: end for
9: for k 1, q do . For ui+1:i+q

10: Ap+k,p+2 1
11: for ‘ 1, q do Ap+k,‘+p+2 (k � 1)Ap+k,‘+p+1/‘
12: end for
13: end for
14: Ap+q+1,1 �1
15: for ‘ 1, p do . [u]
16: Ap+q+1,‘+1 aAp+q+1,‘/‘
17: end for
18: Ap+q+1,p+2 1
19: for ‘ 1, q do [u]
20: Ap+q+1,‘+p+2 aAp+q+1,‘+p+1/ ‘
21: end for
22: Ap+q+2,2 �1

23: for ‘ 1, p � 1 do . [au0]
24: Ap+q+2,‘+2 a�aAp+q+1,‘+1/‘

25: end for
26: Ap+q+2,p+3 1

27: for ‘ 1, q � 1 do . [au0]
28: Ap+q+2,‘+p+3 a+aAp+q+2,‘+p+2/‘

29: end for
30: v 01�p+q+2 . v is a column vector

31: v1,r 1

32: d p!q!jdet Aj
minfja�j;jaþjg . d is equal to jfp,q(a,q)j.

33: if d – 0 then
34: v vA�1

35: end if

36: end function . dr u
dxr ðxiÞ ¼ 1

hr ð
Ppþq

k¼1v1;kui�pþk þ v1;pþqþ1½u� þ v1;pþqþ2h½au0�Þ
Algorithm 2. Coupling interface method with adaptive-order strategy in one dimension

1: function (v,p,q) = CIM1D_GENERAL(a,a�,a+,p,q,r,�)
2: (v,d) = CIM1D_GENERAL(a,a�,a+,p,q,r)
3: if d < � then . � is the tolerance.
4: if ja�j > ja+j then . adaptive-order strategy in one dimension
5: p p + 1
6: else
7: q q + 1
8: end if
9: end if
10: (v,d) = CIM1D_GENERAL(a,a�,a+,p,q,r)
11: end function
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